b2c信息网

您现在的位置是:首页 > 未分类 > 正文

未分类

光学导航系统的工作原理(神经导航系统原理)

hacker2022-07-12 09:24:27未分类93
本文目录一览:1、制导系统的定义和工作原理分别是什么?2、GPS的工作原理是?

本文目录一览:

制导系统的定义和工作原理分别是什么?

制导航弹通常采取电视光学制导(根据光学图像引导)、热视制导(根据可视或红外光线引导)、激光制导(根据目标反射光束引导)、惯性制导、卫星制导等方式。

制导系统通常安装在各种类型的无人驾驶飞行器如导弹(包括鱼雷)、航天器和无人驾驶飞机上,实现自动控制。在有人驾驶的飞机、舰船和潜艇中,也常用制导系统来协助领航员工作。

扩展资料:

导弹在接战目标时,制导系统会接收或计算所需的导航指令,引导导弹循着某种轨迹拦截目标。在一些导弹系统中,导弹本身的引导头(Seeker)和计算机自动驾驶仪(Autopilot)生成这些指令;而在另一些导弹系统里,则由发射导弹的载机通过数据链(Datalink)发送信息给飞行中的导弹,提供修正航向的指令。

精确制导系统的探测维度主要体现在信号维度上,目标探测、跟踪与识别的信号空间逐渐地由低维度向高维度演化,以利用高维空间中目标与背景之间更大的差异性,增强复杂背景中目标探测和抗干扰能力。其表现是,信号输入维度和处理维度呈逐步增加的趋势。

参考资料来源:

百度百科-制导系统

GPS的工作原理是?

原理:

GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。

而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR,):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。

GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;

P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。

它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。

后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。

当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。

可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。

所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。GPS接收机可接收到可用于授时的准确至纳秒级的时间信息;

用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及GPS系统信息,如卫星状况等。

GPS接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。对 CA码测得的伪距称为CA码伪距,精度约为20米左右,对P码测得的伪距称为P码伪距,精度约为2米左右。

GPS接收机对收到的卫星信号,进行解码或采用其它技术,将调制在载波上的信息去掉后,就可以恢复载波。严格而言,载波相位应被称为载波拍频相位,它是收到的受多普勒频 移影响的卫星信号载波相位与接收机本机振荡产生信号相位之差。

一般在接收机钟确定的历元时刻量测,保持对卫星信号的跟踪,就可记录下相位的变化值,但开始观测时的接收机和卫星振荡器的相位初值是不知道的,起始历元的相位整数也是不知道的,即整周模糊度,只能在数据处理中作为参数解算。

相位观测值的精度高至毫米,但前提是解出整周模糊度,因此只有在相对定位、并有一段连续观测值时才能使用相位观测值,而要达到优于米级的定位 精度也只能采用相位观测值。

按定位方式,GPS定位分为单点定位和相对定位(差分定位)。单点定位就是根据一台接收机的观测数据来确定接收机位置的方式,它只能采用伪距观测量,可用于车船等的概略导航定位。

相对定位(差分定位)是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相位观测量,大地测量或工程测量均应采用相位观测值进行相对定位。

在GPS观测量中包含了卫星和接收机的钟差、大气传播延迟、多路径效应等误差,在定位计算时还要受到卫星广播星历误差的影响,在进行相对定位时大部分公共误差被抵消或削弱,因此定位精度将大大提高,双频接收机可以根据两个频率的观测量抵消大气中电离层误差的主要部分,在精度要求高,接收机间距离较远时(大气有明显差别),应选用双频接收机。

GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。

假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间△t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式。

扩展资料:

GPS 设置

GPS 拿到手,如果是新机器要定位,已经提到了。另外,还有一些设置,常用的有坐标系、地图基准、参考方位、公制/英制、数据接口格式什么的。

坐标系:常用的是 LAT/LON 和 UTM。LAT/LON 就是经纬度表示,UTM 在这里就不管他了。

地图基准:一般用 WGS84。

参考方位:实际上有两个北,磁北和真北呀(简称 CB 和 ZBY)。指南针指的北就是磁北,北斗星指的北就是真北。两者在不同地区相差的角度不一样的,地图上的北是真北。

公制/英制:自选。

数据接口格式:这得细谈谈。GPS

可以输出实时定位数据让其他的设备使用,这就牵扯到了数据交换协议。

几乎所有的 GPS 接收机都遵循美国国家海洋电子协会(National

Marine Electronics

Association)所指定的标准规格,这一标准制订所有航海电子仪器间的通讯标准,其中包含传输资料的格式以及传输资料的通讯协议。N

MEA

协议有 0180、0182 和 0183 三种,0183 可以认为是前两种的超集,现在正广泛的使用。

经纬度的表示

再讲讲数据表示。一般从 GPS 得到的数据是经纬度。经纬度有多种表示方法。

1.)ddd.ddddd, 度.度的十进制小数部分(5 位)

2.)ddd.mm.mmm,度.分.分的十进制小数部分(3 位)

3.) ddd.mm.ss, 度.分.秒

不是所有的 GPS 都有这几种显示, GPS315 只能选择第二种和第三种。

在 LAT/LON 坐标系里,纬度是平均分配的,从南极到北极一共 180 个纬度。地球直径 12756KM,周长就是12756*PI,一个纬度是 12756×PI /360 = 111.133 KM (不精确)。

经度就不是这样,只有在纬度为零的时候,就是在赤道上,一个经度之间的距离是 111.319KM,经线随着纬度的增加,距离越来越近,最后交汇于南北极。所以经度的单位距离和确定经度所在的纬度是密切相关的,简单的公式是:

经度 1°长度=111.413cosφ,在纬度φ处。 (公式不精确)

参考资料:百度百科----GPS

激光导航AGV的工作原理是什么样的?

AGV的上部安装了激光扫描器,激光扫描器随AGV的行走,发出旋转的激光束。发出的激光束被沿AGV行驶路径铺设的多组反光板(全向反光板)直接反射回来,触发控制器记录旋转激光头遇到反光板时的角度。控制器根据这些角度值与实际的这组反光板的位置相匹配,计算出AGV的绝对坐标,基于这个原理就可以实现非常精确的激光导引,现阶段激光反光板导航是导航精度最高的导航方式,定位精度在毫米级,主要应用在叉车式AGV导航。

探测角度:360°

激光安全级别:Ⅰ类激光、绝对安全

原理简介:

基于反光板的激光导航是通过激光发射器连续不停的发射激光脉冲,由旋转光学机构将激光脉冲按一定角度间隔(角度分辨率)发射向扫描角度内的各个方向而形成一个以径向坐标为基准的二维扫描面。激光雷达通过识别扫描范围内的物体表面反射率,来识别激光反光板的位置信息(X,Y),再通过最少三个反光板的位置计算出激光雷达所在的AGV的位置和姿态信息(X,Y,a)。

凌鸟(苏州)AGV智能系统有限公司以拥有自主知识产权的关键技术为基础,为客户提供专业agv解决方案AGV系统。凌鸟智能是一家致力于移动机器人,工业机器人,服务机器人自主研发企业。从事自动化物流,无人搬运车,无人叉车,无人仓,AGV叉车及上下料机器人AGV小车品牌叉车公司,致力于成为“你身边的智能工厂+智能物流方案集成专家”,实现企业价值与客户价值共同成长,为国家智能制造2025战略目标添砖加瓦。

陀螺导航仪的原理是什么

陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。

现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年 等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。

现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。

导航工作的原理

汽车导航系统的任务就是不断的以视觉或语音方式给驾驶员推荐汽车行驶路线。导航系统利用GPS定位卫星的数据(你的导航器发出的信号与天上的卫星连接,检测你在地球的具体哪个地方哪个点,然后回馈给你的导航系统,导航再通过与内存卡里的地图对照才能在显示器上显示出你在

)、汽车行驶速度方向,以使用符号或数字地图以及语音输出,直接为驾驶员引导汽车到达目的地。

发表评论

评论列表

  • 囤梦酷腻(2022-07-12 20:19:05)回复取消回复

    )发送信息给飞行中的导弹,提供修正航向的指令。精确制导系统的探测维度主要体现在信号维度上,目标探测、跟踪与识别的信号空间逐渐地由低维度向高维度演化,以利用高维空间中目标与背景之间更大的差异性,增强复杂背景中目标探测和抗干扰能力。其表现是,信号输入维度和处理维

  • 闹旅扶弦(2022-07-12 14:40:18)回复取消回复

    的影响,在进行相对定位时大部分公共误差被抵消或削弱,因此定位精度将大大提高,双频接收机可以根据两个频率的观测量抵消大气中电离层误差的主要部分,在精度要求高,接收机间距离较远时(大气有明显差别),应选用双频接收机。GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方

  • 温人择沓(2022-07-12 18:16:29)回复取消回复

    艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年 等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀