b2c信息网

您现在的位置是:首页 > 头条资讯 > 正文

头条资讯

关于导航的相关介绍(导航百度百科)

hacker2022-07-16 10:11:21头条资讯107
本文目录一览:1、导航是根据什么发明出来并能精准的知道每条路的?2、

本文目录一览:

导航是根据什么发明出来并能精准的知道每条路的?

说到导航系统,一般就会联想到 GPS。GPS 又称为全球卫星定位系统,是美国开发的卫星定位技术。这套卫星定位系统基本设计共有 24 颗卫星(目前运作中的卫星为 31 颗,由于卫星的寿命长短不一,美国每年都会发射一些卫星来更新这个系统)。

这些卫星绕行在地球四周,并分布在 6 个平面上,由于其卫星轨道经特殊的设计与安排,使得 GPS 接收器在地球上约 98% 的位置,只要不被障碍物遮盖,都可以接收到至少 4 颗以上卫星的讯号。而之所以需要至少 4 颗以上卫星的讯号,主要是作为 3 颗卫星的三角定位使用,与 1 颗的辅助定位。

三颗卫星就能决定位置?

要决定你的所在位置,需要利用卫星的三角定位原理。要做到三角定位,首先要量测你和卫星的距离,要测得两点的距离,可由速度和时间差间接求得(距离=速度x时间)。因为卫星会不断向地表发送讯号,地面上的 GPS 接收器也会不断接收卫星讯号,所以藉由卫星发送讯号与地面接收讯号的时间差,乘上已知讯号的传送速率,就能得到卫星与地面 GPS 接收器的距离。

因为卫星不断向四周发送讯号,若以卫星为圆心,以前述卫星与 GPS 接收器的距离为半径,划出一个球体,它球面上的每一点都是此接收器可能的位置。那么这个接收器到底在哪一点?这时若有此接收器与其他两个卫星的距离,就能画出三个球面,而这三个球面会交会出两个点,这两个点有其中一点必会在地表上。因此若可知三颗已知卫星的位置及其与地面接收器的距离,就能知道接收器在地表的实际位置。

不过,透过上述原理只能得知接收器在地表上的大概坐标,因为卫星讯号在传送与接收的过程中,有容易受环境干扰而不稳定的问题。因此通常需要用到第四颗卫星或差分全球定位系统(DGPS),来确保前面三颗卫星计算结果并提高精确度。当然能参考的卫星点越多,位置的计算结果将会越准确。

更高精准度的定位需求

要如何实现高精准定位系统呢?其关键就是对于当前位置信息了解得越多越好,所以现行手机上高精准度的定位系统,除了使用美国的 GPS 定位外,还会额外参考中国的北斗(BDS)、俄罗斯的 GLONASS等卫星信息。此外,若能配合数位地图、地标,甚至是移动信号基站,就能得到更精确的定位效果。

高精准地图

为了实现高精准度的定位系统,所采用的导航地图,当然也具有高准确度与较多细节信息上的需求,也可以称为高精准地图。现在应用市场上大部分地图软件,透过搭载立体摄影机的车辆,收集周边完整的道路信息,并辨识有助于定位的道路特征。

例如建筑物的角落、灯柱及道路标志等, 也会侦测车道标线、方向箭头、行人穿越道、停车线及路缘。与来自  GPS 的相关定位资料结合后,即可建立一份详尽的路线影像,如此可大幅提升对每条路的精准识别。此外,这些资料还可以随时更新与提供实时的路况。

北斗导航详细介绍

北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为:2000年10月31日;2000年12月21日;2003年5月25日,2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥“双保险”作用。

北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。 北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。

北斗一号系统的基本功能包括:定位、通信(短消息)和授时。

北斗二代系统的功能与GPS相同,即定位与授时。

[编辑本段]系统工作原理

“北斗一号”卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标经加密由出站信号发送给用户。

“北斗一号”的覆盖范围是北纬5°一55°,东经70°一140°之间的心脏地区,上大下小,最宽处在北纬35°左右。其定位精度为水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。工作频率:2491.75MHz。系统能容纳的用户数为每小时540000户。

[编辑本段]与GPS系统对比

1、覆盖范围:北斗导航系统是覆盖我国本土的区域导航系统。覆盖范围东经约70°一140°,北纬5°一55°。GPS是覆盖全球的全天候导航系统。能够确保地球上任何地点、任何时间能同时观测到6-9颗卫星(实际上最多能观测到11颗)。

2、卫星数量和轨道特性:北斗导航系统是在地球赤道平面上设置2颗地球同步卫星颗卫星的赤道角距约60°。GPS是在6个轨道平面上设置24颗卫星,轨道赤道倾角55°,轨道面赤道角距60°。航卫星为准同步轨道,绕地球一周11小时58分。

3、定位原理:北斗导航系统是主动式双向测距二维导航。地面中心控制系统解算,供用户三维定位数据。GPS是被动式伪码单向测距三维导航。由用户设备独立解算自位解算在那里而不是由用户设备完成的。为了弥补这种系统易损性,GPS正在发展星际横向数据链技术,使万一主控站被毁后GPS卫星可以独立运行。而“北斗一号”系统从原理上排除了这种可能性,一旦中心控制系统受损,系统就不能继续工作了。

4、实时性:“北斗一号”用户的定位申请要送回中心控制系统,中心控制系统解算出用户的三维位置数据之后再发回用户,其间要经过地球静止卫星走一个来回,再加上卫星转发,中心控制系统的处理,时间延迟就更长了,因此对于高速运动体,就加大了定位的误差。此外,“北斗一号”卫星导航系统也有一些自身的特点,其具备的短信通讯功能就是GPS所不具备的。

综上所述,北斗导航系统具有卫星数量少、投资小、用户设备简单价廉、能实现一定区域的导航定位、通讯等多用途,可满足当前我国陆、海、空运输导航定位的需求。缺点是不能覆盖两极地区,赤道附近定位精度差,只能二维主动式定位,且需提供用户高程数据,不能满足高动态和保密的军事用户要求,用户数量受一定限制。但最重要的是,“北斗一号”导航系统是我国独立自主建立的卫星导少的初步起步系统。此外,该系统并不排斥国内民用市场对GPS的广泛使用。相反,在此基础上还将建立中国的GPS广域差分系统。可以使受SA干扰的GPS民用码接收机的定位精度由百米级修正到数米级,可以更好的促进GPS在民间的利用。当然,我们也需要认识到,随着我军高技术武器的不断发展,对导航定位的信息支持要求越来越高。

[编辑本段]双星定位不同于“多星”定位

“一代‘北斗’只用双星定位,比GPS等投资小、建成快,”范本尧说这是我国国情决定的,也对一代“北斗”的技术路线提出了特殊的要求,“所以我们的定位系统具有自己的特点。”

美国的GPS和俄罗斯的GLONASS,都是使用24颗卫星(GPS还另有3颗备份卫星,GLONASS则因经费问题损失了几颗卫星)组成网络。这些卫星不中断地向地面站发回精确的时间和它们的位置。GPS接收器利用GPS卫星发送的信号确定卫星在太空中的位置,并根据无线电波传送的时间来计算它们间的距离。等计算出至少3~4颗卫星的相对位置后,GPS接收器就可以用三角学来算出自己的位置。每个GPS卫星都有4个高精度的原子钟,同时还有一个实时更新的数据库,记载着其他卫星的现在位置和运行轨迹。当GPS接收器确定了一个卫星的位置时,它可以下载其他所有卫星的位置信息,这有助于它更快地得到所需的其他卫星的信息。

“1983年,‘两弹一星’功勋奖章获得者陈芳允院士和合作者提出利用两颗同步定点卫星进行定位导航的设想,经过分析和初步实地试验,证明效果良好,”中国计量科学研究院的黄秉英研究员说,这一系统被称为“双星定位系统”。

一代“北斗”采用的基本技术路线最初来自于陈芳允先生的“双星定位”设想,正式立项是在1994年。北斗卫星导航系统由空间卫星、地面控制中心站和用户终端等3部分即可完成定位。一代“北斗”与GPS系统不同,对所有用户位置的计算不是在卫星上进行,而是在地面中心站完成的。因此,地面中心站可以保留全部北斗用户的位置及时间信息,并负责整个系统的监控管理。

有源无源是关键不同点

“一代‘北斗’采用的是有源定位,GPS和GLONASS等都是无源定位,”范本尧说,“这是它们质上的不同点。”

所谓有源定位就用户需要通过地面中心站联系及地面中心站的传输,通讯就不必通过其他的通讯卫星了,一星多用符合我国国情。GPS和GLONASS没有设计通讯功能,主要原因就在于不需要地面站中转服务的无源定位不能提供通讯服务。

区域性基于技术水平

北斗定位导航系统是覆盖中国本土的区域导航系统。中国卫星导航工程中心副主任冉承其介绍,北斗定位导航系统的开发具有重要意义,并有一些GPS系统所没有的长处,如在静态地图的基础上,可以把道路拥堵的实时情况在导航仪上反映出来。

一代“北斗”是区域卫星导航系统,只能全天候、全天时用于中国及其周边地区;而GPS和GLONASS都是全球导航定位系统,在全球的任何一点,只要卫星信号未被遮蔽或干扰,都能接收到三维坐标。“区域性是我国双星定位的技术特点、水平以及国家需求决定的,”范本尧说。

GPS和GLONASS的空间部分是高度在2万千米左右的卫星组成的网络。GPS的卫星平均分布在6个轨道平面上,GLONASS卫星平均分布在3个轨道平面上,不停地绕地球旋转。这样,在全球的任何位置、任何时间都可同时观测到4颗以上的卫星,通过它们就可以获得高精度的三维定位数据。

“北斗”一号是双星定位,轨道偏高,距离地面3万6千千米,是地球同步静止轨道卫星。之所以要在这么高的高度是因为我们只有两颗定位卫星,不能覆盖整个地球,如果在较低轨道上绕地运行,每天就要有一定时间不能监控我国所在区域。

二代“北斗”可称“中国的GPS”

“我国发展二代‘北斗’不会采取一步到位的方式,也不会停掉一代,另外发展二代,”范本尧说,“我们会在一代的基础上不断补充卫星数,增加其功能,提高其整体水平。”这位将继续承担二代“北斗”设计工作的科学家说:“二代‘北斗’可以称为‘中国的GPS’,不过它仍然会比GPS多一个通讯为发展我国二代“北斗”的关键技术提供了准备。范本尧举例说,此次定位的“北斗”一号备份卫星上新装载了用于卫星定位的激光反射器,能够参照其他星,把自身位置精确定格在几个厘米的尺度以内。这颗卫星已定位成功,表明这种技术是有效而可靠的。这样,当我们不断发射新的卫星构建二代“北斗”体系时,众多卫星就会找准自己的位置,构成符合标准的网络。此外,“北斗”一号的3颗星寿命都是8年,专家正不断研究,预计下一次发射的卫星寿命就能达到10年左右了;而目前GPS卫星的寿命都是12年左右,GLONASS卫星的寿命则是3到5年。

“20世纪原子钟最辉煌的应用莫过于由它构成了全球定位系统的核心,”黄秉英说,导航星和地面站全离不开它。目前的原子钟主要有3种:铷钟、铯钟和氢钟。结构紧凑、可靠性高、寿命长的原子钟正是发展全球定位系统必需的。在结构方面,铷钟最小体积已达到6立方厘米;在频率稳定度方面,氢钟最好;而在长期频率稳定度和准确度方面,则以铯钟最佳。目前,设在中国计量科学研究院的国家授时中心使用的就是被称为“激光冷却-铯原子喷泉频率基准”的铯钟,我国的授时基准---UTC(NIM)都是由它提供并不断同国际基准校正的,而“北斗”将建成,届时,国民经济各领域都将从中获得更大的效益。

2003年5月25日,我国在西昌卫星发射中心将第三颗“北斗一号”导航定位卫星送上太空,标志着我国拥有了自己的第一代完善的卫星导航定位系统。北斗卫星导航定位系统是第一代全天候、全天时提供卫星导航信息的区域导航系统,它由两颗工作星和一颗备份星组成。前两颗“北斗一号”卫星分别于2000年10月31日和12月21日发射升空。

北斗卫星导航系统可以为船舶运输、公路交通、铁路运输、野外作业、水文测报、森林防火、渔业生产、勘察设计、环境监测等众多行业以及其他有特殊调度指挥要求的单位提供定位、通信和授时等综合服务。

2000年,北斗导航定位系统两颗卫星成功发射,标志着我国拥有了自己的第一代卫星导航定位系统,这对于满足我国国民经济、国防建设的需要,促进我国卫星导航定位事业的发展,具有重大的经济和社会意义。北斗导航定位系统由北斗导航定位卫星、地面控制中心为主的地面部分、北斗用户终端三部分组成。

北斗导航定位系统服务区域为中国及周边国系统可广泛应用于船舶运输、公路交通、铁路运输、海上作业、渔业生产、水文测报、森林防火、环境监测等众多行业,以及军队、公安、海关等其他有特殊指挥调度要求的单位。

[编辑本段]北斗系统三大功能

快速定位:北斗系统可为服务区域内用户提供全天候、高精度、快速实时定位服务,定位精度20—100m;

短报文通信:北斗系统用户终端具有双向报文通信功能,用户可以一次传送40-60个汉字的短报文信息;

由于对包含车辆的位置和状态信息的数据要求有一定的实时性。同时车辆与调控中心之间的信息沟通实际上也是一种数据的通信方式,其信息量一般也不会超过GSM短信息的长度范围。因此利用GSM的短消息业务基本可满足系统通信的需要。 其次,通过短信息方式发送数据其成本代价远远低于其它方式(如通过话音信道)。

与其他无线电台等传统方式比较,采用GSM短信息网络系统具有以下优点:

1、 速度快,实时性好,不掉线;

2、 可以双向通信,及时返回终端信息;

3、 设备体积小,操作简单;

4、 由于控制中心无须专门设置大功率发射电台,将大大降低安装费用;

5、 覆盖面广受地理环境

精密授时:北斗系统具有精密授时功能,可向用户提供20ns-100ns时间同步精度。

[编辑本段]北斗卫星定位系统的民用服务提供商

目前有五家,以神州天鸿(北京神州天鸿科技有限公司)和北斗星通(北京北斗星通卫星导航技术有限公司)最为出色。

神州天鸿公司的网址是:

北斗星通公司的网址是:

[编辑本段]北斗一号卫星定位系统民用终端设备行业标准

《北斗一号民用车(船)载遇险报警终端设备技术要求和使用要求》(标准编号为JT/T590-2004)

《北斗一号民用数据采集终端设备技术要求和使用要求》(标准编号为JT/T591-2004)

《北斗一号民用车(船)载终端设备技术要求和使用要求》(标准编号为JT/T592-2004)

[编辑本段]北斗应用五大优势

同时具备定位与通信功能,无需其他通信系统支持;

覆盖中国及周边国家和地区,24小时全天候服务,无通信区;

特别适合集团用户大范围监控与管理,以及无依托地区数据采集用户数据传输应用;

独特的中心节点式定位处理和指挥型用户机设计,可同时解决“我在哪”和“你在哪”;

自主系统,高强度加密设计,安全、可靠、稳定,适合关键部门应用。

[编辑本段]“北斗一号”GPS 汶川地震中起重要作用

“北斗一号”在通信中断情况下发挥重要作用

中国自主研制的“北斗一号”系统在通信中断的情况下发挥重要作用,救灾部队携带的北斗系统正在陆续发回各种灾情和救援信息。

“北斗一号”卫星导航定位系统监测到,一支携带了“北斗一号”终端机的部队,从中午12时开始,沿着马尔康、黑水、理县到汶川的317国道,以每小时6公里左右的速度一路急进。6个小时前进了近40公里,已经进入汶川县境内,离县城还有40公里左右的路程。

由于通信受阻碍,位于北京的卫星导航定位指控中心初步判断该部队隶属四川武警总队。指控中心正在进一步了解情况。

[编辑本段]北斗卫星系统将首先应用于北京奥运会

从12月5日开幕的2007上海国际导航产业与科技发展论坛上获悉,由我国自主研发的北斗卫星导航系统已进入初步应用阶段,具备区域导航能力,2008年该系统将首先应用于北京奥运会。北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥“双保险”作用。

“目前,北斗卫星导航系统已拥有5颗导航卫星,2008年前还将发射一些卫星。”中国卫星导航工程中心副主任冉承其在发布会上说,2003年,我国已建立起北斗导航试验系统,该试验系统具有为中国及其周边地区定位、授时、报文等功能,并已在交通运输、渔业、勘探、森林防火等民用领域使用。随后建设的北斗卫星导航系统功能更趋完善。

据悉,该系统08将为北京奥运会的交通调度或场馆监控服务,届时,将把自身具备的监控功能和北京交通部门所提供的交通拥堵情况进行叠加,使驾驶者不仅能知道哪条路线距离最短,还能结合道路的实时情况,寻找到一条用时最短的线路。据估计,2010年前,北斗卫星导航系统将在上海使用。

北斗定位导航系统是覆盖中国本土的区域导航系统。中国卫星导航工程中心副主任冉承其介绍,北斗定位导航系统的开发具有重要意义,并有一些GPS系统所没有的长处,如在静态地图的基础上,可以把道路拥堵的实时情况在导航仪上反映出来。

关于卫星导航的资料

1. GPS系统组成

GPS gloabal Positioning System,这玩意是美国人搞的。主要分三大块,地面的控制站、天上飞的卫星、咱们手里拿的接收机。

简单唠叨唠叨

先说说设备, 当然大个的都是老美给咱准备好的,

地上,有一个主控制站,当然在老美的本土了,在科罗拉多。三个地面天线,五个监测站,分布在全球。主要是收集数据,计算导航信息,诊断系统状态,调度卫星这些杂事。

天上,有27颗卫星,距离地面20200公里。27颗卫星有24颗运行,3颗备用。这些卫星已经更新了三代五种型号。卫星发射两种信号:L1和L2。L1:1575.42MHZ, L2:1227.60MHZ。卫星上的时钟采用铯原子钟或铷原子钟,计划未来用氢原子钟,比我的手表准。

手里,就是接收机了。大大小小,千姿百态,有袖珍式、背负式、车载、船载、机载什么的。一般常见的手持机接收L1信号,还有双频的接收机,做精密定位用的。

2.关于GPS接收机

GPS现在一般都是12通道的,可以同时接收12颗卫星。早期的型号,比如GARMIN 45C就是8通道。GPS接收机收到3颗卫星的信号可以输出2D(就是2维)数据,只有经纬度,没有高度,如果收到4颗以上的卫星,就输出3D数据,可以提供海拔高度。但是因为地球自己的问题,不是太标准的圆,所以高度数据有一些误差。现在有些GPS接收机内置了气压表,比如etrex的SUMMIT和VISTA,这些机器根据两个渠道得到的高度数据综合出最终的海拔高度,应该比较准确了。

GPS接收机的第一次开机,或者开机距离里上次关机地点超过800KM以上,因为接收机里存储的星历都对不上了,所以要在接收机上重新定位。

GPS接收机的使用要在开阔的可见天空下,所以,屋里就不能用了。手持GPS的精度一般是误差在10米左右,就是说一条路能看出走左边还是右边。精度主要依赖于卫星的信号接收,和可接收信号的卫星在天空的分布情况,如果几颗卫星分布的比较分散,GPS接收机提供的定位精度就会比较高。

如果你有笔记本,如果你有的时候要开车去外地。那么这是最便宜和实用的GPS解决方案。

3.定位精度

谈到定位精度,就得说说SA和AS.

什么是SA,AS呢?别急, 这还得从头说起,要不然你也不好明白。

GPS的信号有两种C/A码,P码。

C/A码的误差是29.3m到2.93米。一般的接收机利用C/A码计算定位。美国在90代中期为了自身的安全考虑,在信号上加入了SA (Selective Availability),令接收机的误差增大,到100米左右。在2000年5月2日,SA取消,所以,咱们现在的GPS精度应该能在20米以内。

P码的误差为2.93米到0.293米是C/A码的十分之一。但是P码只能美国军方使用,AS(Anti-Spoofing),是在P码上加上的干扰信号。

总之,老美也是挺累的。发了一大堆卫星用于军用定位。然后觉得不值,想赚点钱,于是开发信号给民用,精度还不能太高,可精度低了大家又骂娘。因为GPS掌握在老美的手中,虽说免费使用,可是其他国家用着也不踏实,前两天打阿富汉是,美国就把该地区的GPS信号做了处理,定位精度变低。

俄罗斯有自己的卫星定位系统,全球导航卫星系统(GLObal NAvigation Satellite System)。欧洲也要发展自己的定位系统NAVSAT。中国也有自己的卫星定位,叫北斗,是双星系统,只能定位自己国家和附近的地区,而且目前只用于军方。

GPS应用知识2

今天讲的东西比较枯燥,但是有用啊,可以拿去和别人神侃。

1. GPS的设置

GPS拿到手,如果是新机器要定位,上次已经提到了。另外,还有一些设置,常用的有坐标系、地图基准、参考方位、公制/英制、数据接口格式什么的。

坐标系:常用的是LAT/LON和UTM。LAT/LON就是经纬度表示,UTM在这里就不管他了。

地图基准:一般用WGS84。

参考方位:就是北在哪里。北在哪里呢?实际上有两个北,磁北和真北呀(简称CB和ZBY)。

指南针指的北就是磁北,北斗星指的北就是真北。两者在不同地区相差的角度不一样的,地图上的北是真北。

公制/英制:自己选吧,我用公制。

数据接口格式:这得细谈谈。GPS可以输出实时定位数据让其他的设备使用,这就牵扯到了数据交换协议。几乎现在所有的GPS接收机都遵循美国国家海洋电子协会(National Marine Electronics Association)所指定的标准规格,这一标准制订所有航海电子仪器间的通讯标准,其中包含传输资料的格式以及传输资料的通讯协议。NMEA协议有0180、0182和0183三种,0183可以认为是前两种的超集,现在正广泛的使用,0183有几个版本,V1.5 V2.1。所以,如果大家的GPS接收机如果要联上笔记本里通用的GPS导航程序,比如OZIEXPLORER和俺的GPSRECEIVER,就应该选择NEMA V2.0以上的协议。NMEA规定的通讯速度是4800 b/S。现在有些接收机也可以提供更高的速度,但说实话,没有什么用,4800就足够了。

象GARMIN,自己有一个mapsource软件,为了不让其他品牌的GPS使用该软件,就设计了私有的GARMIN协议,只有GARMIN的机器才能输出这种数据,而MAPSOURCE只能接收GARMIN协议,这样一来MAPSOURCE就只能让GARMIN的机器使用,打倒打倒!!!

2.经纬度的表示

再讲讲数据表示吧。一般从GPS得到的数据是经纬度。经纬度有多种表示方法。

1.) ddd.ddddd, 度 . 度的十进制小数部分(5位)

2.) ddd.mm.mmm,度 . 分 . 分的十进制小数部分(3位)

3.) ddd.mm.ss, 度 . 分 . 秒

不是所有的GPS都有这几种显示,我的GPS315只能选择第二种和第三种

一度是多远呢?如果这么问,可就太外行了。

在LAT/LON坐标系里,纬度是平均分配的,从南极到北极一共180个纬度。地球直径12756KM,周长就是12756*PI,一个纬度是 12756×PI /360 = 111.133 KM (先说明白,不精确啊)。

经度就不是这样啦,只有在纬度为零的时候,就是在赤道上,一个经度之间的距离是111.319KM,经线随着纬度的增加,距离越来越近,最后交汇于南北极。大家想想,没错吧。所以经度的单位距离和确定经度所在的纬度是密切相关的,简单的公式是:

经度1°长度=111.413cosφ,在纬度φ处。 (这个公式也不精确呀,蒙人还可以)

做题:北京的经度119度,纬度40度。单位经度,单位纬度各是多少?

答: 单位纬度111.133KM 单位经度111.413×COS 40 = 85.347KM

讲这些的用途就是容易理解经纬度的表示。

1.)ddd.ddddd,在北京,纬度最后一位小数增1,实际你走了多少?大约1.1M

经度最后一位小数增1,实际你走了多少?大约0.85M

2.) ddd.mm.mmm,在北京,纬度最后一位小数增1,实际你走了多少?大约1.85M

经度最后一位小数增1,实际你走了多少?大约1.42M

3.) ddd.mm.ss,在北京,纬度秒增1,实际你走了多少?大约30.9M

经度秒增1,实际你走了多少?大约23.7M

今天说的都不是精确的公式,一般估计大致的数字没有问题。

GPS导航技术的新进展

美国的全球定位系统(GPS)导航卫星正在逐步现代化。GPS从美国空军的导航辅助设备开始,逐渐发展成军民两用的一种重要技术。GPS的精确位置与定时信息,已成为世界范围各种军民用、科研和商业活动的一种重要资源

GPS卫星的发展及信号的改进 GPS导航卫星自1978年发射以来,其型别已由第Ⅰ,Ⅱ和ⅡA批次发展到ⅡR批次。第Ⅰ,Ⅱ和ⅡA批次卫星共有40颗,是由罗克韦尔公司制造的,而20颗ⅡR批次卫星则由洛克希德·马丁公司制造。波音公司在1996年收购了罗克韦尔的航空航天和防务业务,目前正在制造33颗更先进的ⅡF批次卫星。美国还在考虑发展采用点波束的新一代GPS卫星(GPS-Ⅲ)。

GPS从1994年全面工作以来,改进工作一直在进行中。这是因为民用用户要求GPS具有更好的抗干扰和干涉性能、较高的安全性和完整性;军方则要求卫星发射较大的功率和新的同民用信号分离的军用信号;而对采用GPS导航的"灵巧"武器,加快信号捕获速度更为重要。

民用GPS导航精度迄今的最大改进发生在2000年5月2日,美国停止了故意降低民用信号性能(称为选择可用性,即S/A)的做法。在S/A工作时,民用用户在99%的时间只有100米的精度。但当S/A切断后,导航精度上升,95%的位置数据可落在半径为6.3米的圆内。

GPS卫星发送两种码:粗捕获码(C/A码)和精码(P码)。前者是民用的,后者只限于供美军及其盟军以及美国政府批准的用户使用。这些码以扩频方式调制在两种不同的频率上发射:L1波段以1575.42兆赫发射C/A和P码;而L2波段只以1227.6兆赫发射P码。

GPS卫星导航能力最重大的改进将从2003年发射洛克希德·马丁首批ⅡR-M(修改的ⅡR)卫星开始。ⅡR-M卫星将发射增强的L1民用信号,同时发射新的L2民用信号和军用码(M码)。进一步的改进将从发射波音ⅡF批次卫星的2005年开始,ⅡF批次卫星除发射增强的L1、L2民用信号和M码外,将在1176.45兆赫增加第3个民用信号(L5)。在ⅡF发射以前,M码将从发展型过渡到工作型。因为导航卫星星座的发射需要有一段时间,故在轨道上获得全工作能力则要在2007年发射18颗L2民用信号和M码卫星后才能实现。18颗卫星组成的第三个民用信号(L5)的星座预计要到2011年才能发射完。

此后,美军将得到抗干扰能力有所增强的新信号--M码。它能发送更大的功率,而不干涉民用接收机。M码还给军方一种新的能力,以干扰敌方对信号的利用,但其细节是保密的。

L2民用信号即第二个民用信号称为L2C,使民用用户也能补偿大气传输不定性误差,从而使民用导航精度提高到3~10米。而美军及其盟军因一开始就能接收L1和L2中的P码,故一直具有这种能力。

对L2的设计约束是它必须与新的M码兼容。为避免对军用L2 P(Y)接收机的任何损害,新的民用L2应具有与现有C/A码相同的功率和频谱形状。这里,括号中的Y码是P码的加密型。实际上,民用L2信号将比现有的L1 C/A信号低2.3分贝。功率较低的问题将由现代的多相关器技术加以克服,以便迅速捕获很微弱的信号。

GPS卫星发射的信号必须现代化,同时又要保持向后兼容性。组合的民用信号与军用信号必须放在现有频带中,而且具有足够的隔离,以防互相干涉。美国决定将C/A码信号放在L1频带和新的L2频带的中部,供民用使用,而保留Y码信号。

M码将采用一种裂谱调制法,它把其大部分功率放在靠近分配给它的频带的边缘处。抗干扰能力主要来自不干涉C/A码或Y码接收机的强大的发射功率。

M码信号的保密设计基于下一代密码技术和新的密钥结构。为进一步分离军用和民用码,卫星对于M码将具有单独的射频链路和天线孔径。当卫星能工作时,每颗卫星可能在每个载波频率上发射两个不同的M码信号。即使由同一颗卫星以同一载波频率发射,信号将在载波、扩散码、数据信息等方面不同。

M码的调制将采用二进制偏置载波(BOC)信号,其子载波频率为10.23兆赫,扩码率为每秒5.115百万扩散位,故称为BOC(10.23,5.115)调制,简称BOC(10,5)。因为BOC(10,5)调制与Y和C/A码信号相分离,故可以较大的功率发射,而不降低Y或C/A码接收机的性能。BOC(10,5)对于针对C/A码信号的干扰不敏感,而且与用来扩展调制的二进制序列的结构难以分辨。

L5将位于960~1215兆赫频段,而地面测距仪/塔康(DME/TACAN)导航台和军用数据链(Link 16)已大量使用这个频段,但这只会对欧洲中部和美国高空飞行的飞机产生干扰。美国计划对在L5±9兆赫以内的DME频率进行重新分配,以便L5信号在美国的所有高度都能良好地接收。

一些新的抗干扰技术

由于GPS卫星发射的导航信号比较微弱,而且以固定的频率发射,因此军用GPS接收机很容易受到敌方的干扰。

美国国防预研计划局(DARPA)正在发展一种新的抗干扰方法,采用战场上空的无人机来创造伪GPS星座,使其信号功率超过敌方干扰信号的功率。

所谓伪卫星,就是将GPS导航信号发射机装在飞机或地面上,顶替GPS卫星来进行导航。DARPA用无人机做伪卫星的研究,称为GPX伪卫星概念,旨在使己方的部队在受干扰的战场环境中具有精确的导航能力。其方法是由飞行中无人机上的4颗伪卫星广播大功率信号,这样在战场区域上空产生一个人工GPS星座。4架"猎人"无人机就可覆盖300千米见方的战区。

只要对现有GPS接收机的软件作些改变就可使用伪卫星发射的信号。当用实际GPS星座导航时,接收机开始需要知道卫星位置,即星历的情况,故伪卫星概念面临的挑战是采用可用的低数据率信息把4颗运动的伪卫星的位置告诉接收机。因此,DARPA和柯林斯公司设计人员的关键任务是在可用的50比特/秒信息中发送伪卫星星历。无人机的稳定性相当好,不会像战斗机那样机动;但任何运动都会使位置有点不确定。因而与采用卫星星座的导航比较,其定位总误差将增长约20%。DAPRA已用在7500米高度上的公务机上以及约3000米高度上的"猎人"无人机上试验了单颗伪卫星,导航精度从采用真卫星时的2.7米下降到4.3米。

当然,伪卫星不一定要全部机载,也可采用地面和机载发射机混合的方案。将某些伪卫星设在地面上的缺点是减少了覆盖范围,但提高了导航精度。为了克服干扰,伪卫星可发射100瓦信号,使地面接收机处的信号强度比来自卫星的信号强度增加45分贝。

诺斯罗普·格鲁门公司正在研制可提供30~40分贝抗干扰改进的GPS接收机。这种称为"反干扰自主完整性监控外推"的抗干扰方法将由惯性导航和GPS接收机在载波相位级进行全耦合来实现。全耦合滤波器将减小GPS跟踪回路的带宽,从而减少干扰信号进入GPS接收机的机会。

柯林斯公司和洛克希德·马丁公司联合为JASSM空面导弹研制的G-STAR高反干扰GPS接收机采用了调零和波束操纵的方法。该接收机重11.3千克,采用了一个空间时间适配器,适配器探测出一个威胁,便将其信号调到零,并在发射导航信号的卫星方向增加增益。

这种反干扰技术以数字方式实现,故称为数字波束成形器,它比常规的模拟调零法更为精确,同时可将接收机的波束调整到朝向可用的导航卫星。数字信号处理可通过动态移动零位来抵消噪声,增加增益,并通过一个6元天线阵来操纵波束。

民用GPS接收机也有抗干扰的问题,但民用GPS接收机用户更关心非故意干扰。非故意干扰基本上为宽波段类型,与干扰机将其功率集中于GPS频率不同。与软件有密切关系的数字信号处理方法,在对付宽波段干扰方面是很理想的。

美国Electro-Radiation(ERI)公司指出,常规抗干扰方法的是采用相控阵天线组成的零位操纵天线,这不仅要增加重量,且成本较高,而在接收机上实现的抗干扰技术通常只有有限的干扰剔除能力或者是专为对付某种干扰而特地设计的抗干扰能力。

这家公司已研制出能有效地对付所有已知类型干扰的一种干扰抑制装置(ISU),它不需要昂贵和笨重的天线,可以低成本、高效的方式加装到新的和现有的GPS接收机中,既适合军用,也适合民用。

这种干扰抑制装置包括补钉天线以及可插入任何GPS接收机天线接口的电子装置,用来抑制宽带噪声和窄带干扰。它使GPS接收机增加20分贝的抗宽带噪声能力和35分贝的抗窄带干扰能力。

GPS在飞机着陆中的应用

美国海军试飞员已驾驶F/A-18飞机在罗斯福号航母上利用GPS系统做了首批自动着舰。据称这种系统的性能相当于或超过目前自动着舰系统的性能。

美国海军在发展的着舰系统是雷神公司联合精密进近与着陆系统(JPALS)的海军型,它在JPALS的基础上作了修改。雷神公司正按美国空军的合同为所有军种的飞机研制JPALS系统,系统将采用局域差分GPS修正,为固定翼飞机和旋翼机在陆上机场提供Ⅰ类和Ⅱ类仪表进近。

美国海军牵头的舰载GPS(SRGPS)系统将取代舰载的塔康系统。它将在JPALS上增加一个单向低截获概率(LPI)数据链,为370海里范围内的飞机提供舰的位置。

而在92.5千米半径的范围内,双向LPI数据通信采用与民航空中交通管制(ATC)现代化计划所使用的自动相关监视-广播(ADS-B)类似的位置报告将使航母跟踪多达100架飞机。

在装有SRGPS的情况下,航母和其他舰船将能更隐蔽地与飞机联系,不必使用塔康系统和一次或二次雷达信号,并把话音通信减到最小程度。与塔康的15赫的更新率比,LPI链路将以很低的数据率(0.2赫)工作。

FAA的GPS广域增强系统(WAAS)的发展因一再遇到问题而推迟。该系统是由雷神公司制造的,试图用赤道上空的地球同步通信卫星把完整性告警信息,以及差分修正量等其他数据传送给GPS用户,提高GPS的导航精度,以满足Ⅰ类进近的要求。

原来对WAAS的计划是要在1999年12月开始进行60天的试验,然后在2000年晚些时候投入使用。但这些试验在2000年1月被撤消,撤消原因是由于信号中断以及误警率太高。然而,WAAS表明其精度可达到3米,远比试验所要求的7.6米要好,因而其发展工作仍在继续。据估计,安全性得到认证的WAAS将于2003年年初投入工作。

WAAS使用日期的延误可能还会对其后的局域增强系统(LAAS)产生影响,LAAS将为机场提供精密的GPS仪表进近能力,还有能力跟踪地面上滑行的飞机。LAAS预定2002年在美国46个Ⅰ类机场和114个Ⅱ/Ⅲ类机场投入使用。联邦快递公司的一架波音727-200货机率先在商业运营中采用具有LAAS能力的卫星着陆系统(SLS)进行了精密进近。

GPS的微小型化及其在炮弹制导中的应用

随着GPS/惯性制导系统成本的降低和体积的减小,现在甚至连一些炮弹也将采用GPS/惯性制导。美国英特斯台特电子公司(IEC)已研制了一种炮弹制导用微小型GPS接收机,装在美国海军和陆军的火箭助推的127毫米炮弹的尖头部。这种GPS接收机能承受炮弹发射时的12500g以上的过载,并能迅速截获GPS信号。这种接收机采用快速截获/直接Y码处理,不到6秒就能截获信号,并将跟踪多达8颗卫星。为抑制干扰信号,它被设计成与惯性测量装置紧耦合工作,并采用某种窄带跟踪回路技术。其制导系统中的惯性传感器采用了硅微机电系统(MEMS)技术,因而体积小,成本低。为减轻GPS时钟振荡器在长期储存中的相位不稳定的问题,采用了一种先进的相关器,对GPS信号进行时域搜索以及数据变换,用来搜寻时钟振荡器产生的不定性,从而能直接捕获Y码。

发表评论

评论列表

  • 孤央俛就(2022-07-16 14:59:36)回复取消回复

    克韦尔公司制造的,而20颗ⅡR批次卫星则由洛克希德·马丁公司制造。波音公司在1996年收购了罗克韦尔的航空航天和防务业务,目前正在制造33颗更先进的ⅡF批次卫星。美国还在考虑发展采用点波束的新一代GPS卫星(GPS-Ⅲ)。GPS从1994年全面工作以来,改进工作一直在进

  • 听弧戈亓(2022-07-16 12:59:28)回复取消回复

    地。那么这是最便宜和实用的GPS解决方案。3.定位精度谈到定位精度,就得说说SA和AS.什么是SA,AS呢?别急, 这还得从头说起,要不然你也不好明白。GPS的信号有两种C/A码,P码。C/A码的误差是29.3m到2.93米。一般的接收机利用C/A码计算定

  • 痴妓疚爱(2022-07-16 10:55:17)回复取消回复

    全球定位系统必需的。在结构方面,铷钟最小体积已达到6立方厘米;在频率稳定度方面,氢钟最好;而在长期频率稳定度和准确度方面,则以铯钟最佳。目前,设在中国计量科学研究院的国家授时中心使用的就是被称为“激光冷却-铯原子喷泉频率基准”的铯钟,我国的授时基准---UTC(NIM)都是由它提供并不断