b2c信息网

您现在的位置是:首页 > 最新时事 > 正文

最新时事

卡尔曼滤波组合导航算法的原理(卡尔曼滤波 定位)

hacker2022-07-03 11:40:31最新时事152
本文目录一览:1、什么是卡尔曼滤波?2、什么叫卡尔曼滤波算法其序贯算法?

本文目录一览:

什么是卡尔曼滤波?

卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

什么叫卡尔曼滤波算法其序贯算法?

卡尔曼滤波算法(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

序贯算法又叫序贯相似性检测算法,是指图像匹配技术是根据已知的图像模块(模板图)在另一幅图像(搜索图)中寻找相应或相近模块的过程,它是计算机视觉和模式识别中的基本手段。已在卫星遥感、空间飞行器的自动导航、机器人视觉、气象云图分析及医学x射线图片处理等许多领域中得到了广泛的应用。研究表明,图像匹配的速度主要取决于匹配算法的搜索策略。

数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用。

卡尔曼滤波,求大神用点通俗易懂的方式解释一下,越详细越好!

卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。

数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用.

卡尔曼滤波算法是什么?

卡尔曼滤波是一个滤波算法,应用非常广泛,它是一种结合先验经验、测量更新的状态估计算法,卡尔曼滤波器是在估计线性系统状态的过程中,以最小均方误差为目的而推导出的几个递推数学等式。

卡尔曼过程中要用到的概念。即什么是协方差,它有什么含义,以及什么叫最小均方误差估计,什么是多元高斯分布。如果对这些有了了解,可以跳过,直接到下面的分割线。

均方误差:

它是"误差"的平方的期望值(误差就是每个估计值与真实值的差),也就是多个样本的时候,均方误差等于每个样本的误差平方再乘以该样本出现的概率的和。

方差:

方差是描述随机变量的离散程度,是变量离期望值的距离。

注意:

两者概念上稍有差别,当你的样本期望值就是真实值时,两者又完全相同。最小均方误差估计就是指估计参数时要使得估计出来的模型和真实值之间的误差平方期望值最小。

kalman滤波原理

卡尔曼(kalman)滤波 卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器), 它能够从一系列的不完全包含噪声的测量(英文: measurement)中,估计动态系统的状态。 应用实例 卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的, 包含噪声的观察序列预测出物体的坐标位置及速度. 在很多工程应用(雷达, 计算机视觉)中都可以找到它的身影. 同时, 卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题. 比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度, 加速度的测量值往往在任何时候都有噪声. 卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响, 得到一个关于目标位置的好的估计。 这个估计可以是对当前目标位置的估计(滤波), 也可以是对于将来位置的估计(预测), 也可以是对过去位置的估计(插值或平滑). 命名 这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolf E. Kalman)命名. 虽然Peter Swerling实际上更早提出了一种类似的算法. 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器. 卡尔曼在NASA埃姆斯研究中心访问时, 发现他的方法对于解决阿波罗计划的轨道预测很有用, 后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表. 目前,卡尔曼滤波已经有很多不同的实现. 卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器.除此以外, 还有施密特扩展滤波器,信息滤波器以及很多Bierman, Thornton 开发的平方根滤波器的变种.也行最常见的卡尔曼滤波器是锁相环, 它在收音机,计算机和几乎任何视频或通讯设备中广泛存在.

卡尔曼滤波的基本原理和算法

卡尔曼滤波的原理用几何方法来解释。这时,~X和~Z矩阵中的每个元素应看做向量空间中的一个向量而不再是一个单纯的数。这个向量空间(统计测试空间)可以看成无穷多维的,每一个维对应一个可能的状态。~X和~Z矩阵中的每个元素向量都是由所有可能的状态按照各自出现的概率组合而成(在测量之前,~X和~Z 的实际值都是不可知的)。~X和~Z中的每个元素向量都应是0均值的,与自己的内积就是他们的协方差矩阵。无法给出~X和~Z中每个元素向量的具体表达,但通过协方差矩阵就可以知道所有元素向量的模长,以及相互之间的夹角(从内积计算)。

为了方便用几何方法解释,假设状态变量X是一个1行1列的矩阵(即只有一个待测状态量),而量测变量Z是一个2行1列的矩阵(即有两个测量仪器,共同测量同一个状态量X),也就是说,m=1,n=2。矩阵X中只有X[1]一项,矩阵Z中有Z[1]和Z[2]两项。Kg此时应是一个1行2列的矩阵,两个元素分别记作Kg1 和 Kg2 。H和V此时应是一个2行1列的矩阵。

参考资料:

发表评论

评论列表

  • 礼忱七禾(2022-07-03 21:59:30)回复取消回复

    单纯的数。这个向量空间(统计测试空间)可以看成无穷多维的,每一个维对应一个可能的状态。~X和~Z矩阵中的每个元素向量都是由所有可能的状态按照各自出现的概率组合而成(在测量之前,~X和~Z 的实际值都是不可知的)。~X和~Z中的每个元素向量都应是0均值的,与自己的内积就是他们的协方差矩阵。

  • 拥嬉樱甜(2022-07-03 21:53:04)回复取消回复

    据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的

  • 冢渊酒颂(2022-07-03 18:47:10)回复取消回复

    于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像